120 research outputs found

    Variability-selected low luminosity AGNs in the SA57 and in the CDFS

    Full text link
    Low Luminosity Active Galactic Nuclei (LLAGNs) are contaminated by the light of their host galaxies, thus they cannot be detected by the usual colour techniques. For this reason their evolution in cosmic time is poorly known. Variability is a property shared by virtually all active galactic nuclei, and it was adopted as a criterion to select them using multi epoch surveys. Here we report on two variability surveys in different sky areas, the Selected Area 57 and the Chandra Deep Field South.Comment: to appear in the proceedings of "The Starburst-AGN Connection Conference", Shanghai, China, 27 Oct - 1 Nov 2008, ASP Conference Serie

    Variability and the X-ray/UV ratio of Active Galactic Nuclei

    Full text link
    The observed relation between the X-ray radiation from AGNs, originating in the corona, and the optical/UV radiation from the disk is usually described by the anticorrelation between the UV to X-ray slope alpha_ox and the UV luminosity. Many factors can affect this relation, including: enhanced X-ray emission associated with the jets of radio-loud AGNs; X-ray absorption associated with the UV Broad Absorption Line (BAL) outflows; other X-ray absorption not associated with BALs; intrinsic X-ray weakness; UV and X-ray variability, and non-simultaneity of UV and X-ray observations. The separation of these effects provides information about the intrinsic alpha_ox-L_UV relation and its dispersion, constraining models of disk-corona coupling. We extract simultaneous data from the second XMM-Newton serendipitous source catalogue and the XMM-Newton Optical Monitor Serendipitous UV Source Survey Catalog, and derive the single-epoch alpha_ox indices. We use ensemble structure functions to analyse multi-epoch data. We confirm the anticorrelation of alpha_ox with L_UV, and do not find any evidence of a dependence of alpha_ox on z. The dispersion in our simultaneous data (0.12) is not significantly smaller than in previous non-simultaneous studies, suggesting that "artificial alpha_ox variability" introduced by non-simultaneity is not the main cause of dispersion. "Intrinsic alpha_ox variability", i.e., the true variability of the X-ray to optical ratio, is instead important, and accounts for ~30% of the total variance, or more. "Inter-source dispersion", due to intrinsic differences in the average alpha_ox values from source to source, is also important. The dispersion introduced by variability is mostly caused by the long timescale variations, which are expected to be driven by the optical variations.Comment: 16 pages, 10 figures, 1 table. Final version equal to the published on

    An X-ray and Optical Study of Matter Distribution in the Galaxy Cluster A 2319

    Get PDF
    A new analysis of velocity distribution, optical photometry and X-ray surface brightness from ROSAT PSPC data of the galaxy cluster A 2319 is presented. The temperature profile derived from ASCA data (Markevitch et al.,1996) is taken into account. A method to check the hydrostatic model in the presence of a temperature gradient is proposed. Consistency of the hydrostatic isothermal model and the explanation of the "beta-discrepancy" are discussed. Galaxy and gas density profiles of the main component A 2319A are derived, allowing for the effect of the secondary component A 2319B. The inadequacy of a polytropic model, which would produce a binding mass decrease with respect to the isothermal beta-model, is discussed. A simple interpolation of the temperature profile provides instead an increase of the binding mass and a lower baryon fraction thus mitigating the "baryon catastrophe". Assuming as typical the value f_b ~ 0.2, a comparison with the most recent estimate of Omega_b(nucl) implies for the cosmological parameter Omega_o less than 0.4.Comment: 7 pages, 2 tables, 8 figure

    Spectroscopic follow-up of variability-selected active galactic nuclei in the Chandra Deep Field South

    Full text link
    Luminous AGNs are usually selected by their non-stellar colours or their X-ray emission. Colour selection cannot be used to select low-luminosity AGNs, since their emission is dominated by the host galaxy. Objects with low X-ray to optical ratio escape even the deepest X-ray surveys performed so far. In a previous study we presented a sample of candidates selected through optical variability in the Chandra Deep Field South, where repeated optical observations were performed for the STRESS supernova survey. We obtained new optical spectroscopy for a sample of variability selected candidates with the ESO NTT telescope. We analysed the new spectra, together with those existing in the literature and studied the distribution of the objects in U-B and B-V colours, optical and X-ray luminosity, and variability amplitude. A large fraction (17/27) of the observed candidates are broad-line luminous AGNs, confirming the efficiency of variability in detecting quasars. We detect: i) extended objects which would have escaped the colour selection and ii) objects of very low X-ray to optical ratio. Several objects resulted to be narrow-emission line galaxies where variability indicates nuclear activity, while no emission lines were detected in others. Some of these galaxies have variability and X-ray to optical ratio close to active galactic nuclei, while others have much lower variability and X-ray to optical ratio. This result can be explained by the dilution of the nuclear light due to the host galaxy. Our results demonstrate the effectiveness of supernova search programmes to detect large samples of low-luminosity AGNs. A sizable fraction of the AGN in our variability sample had escaped X-ray detection (5/47) and/or colour selection (9/48). Spectroscopic follow-up to fainter flux limits is strongly encouraged.Comment: 14 pages, 11 figures, to appear in A&

    Selecting AGN through variability in SN datasets

    Full text link
    Variability is a main property of active galactic nuclei (AGN) and it was adopted as a selection criterion using multi epoch surveys conducted for the detection of supernovae (SNe). We have used two SN datasets. First we selected the AXAF field of the STRESS project, centered in the Chandra Deep Field South where, besides the deep X-ray surveys also various optical catalogs exist. Our method yielded 132 variable AGN candidates. We then extended our method including the dataset of the ESSENCE project that has been active for 6 years, producing high quality light curves in the R and I bands. We obtained a sample of ~4800 variable sources, down to R=22, in the whole 12 deg^2 ESSENCE field. Among them, a subsample of ~500 high priority AGN candidates was created using as secondary criterion the shape of the structure function. In a pilot spectroscopic run we have confirmed the AGN nature for nearly all of our candidates.Comment: 6 pages, 3 figures, contributed talk, proceedings of the 9th Hellenic Astronomical Society Conference, Athens, 20-24 September 200

    A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255: I. C IV absorption variability

    Get PDF
    Broad Absorption Lines indicate gas outflows with velocities from thousands km/s to about 0.2 the speed of light, which may be present in all quasars and may play a major role in the evolution of the host galaxy. The variability of absorption patterns can provide informations on changes of the density and velocity distributions of the absorbing gas and its ionization status. We collected 23 photometrical and spectro-photometrical observations at the 1.82m Telescope of the Asiago Observatory since 2003, plus other 5 spectra from the literature. We analysed the evolution in time of the equivalent width of the broad absorption feature and two narrow absorption systems, the correlation among them and with the R band magnitude. We performed a structure function analysis of the equivalent width variations. We present an unprecedented monitoring of a broad absorption line quasar based on 28 epochs in 14 years. The shape of broad absorption feature shows a relative stability, while its equivalent width slowly declines until it sharply increases during 2011. In the same time the R magnitude stays almost constant until it sharply increases during 2011. The equivalent width of the narrow absorption redwards of the systemic redshift only shows a decline. The broad absorption behaviour suggests changes of the ionisation status as the main cause of variability. We show for the first time a correlation of this variability with the R band flux. The different behaviour of the narrow absorption system might be due to recombination time delay. The structure function of the absorption variability has a slope comparable with typical optical variability of quasars. This is consistent with variations of the 200 A ionising flux originating in the inner part of the accretion disk.Comment: 10 pages, 8 figures, to appear on Astronomy & Astrophysic
    • …
    corecore